Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Ecol Evol ; 9(7): 4025-4037, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31015985

RESUMO

A better understanding of species coexistence and community dynamics may benefit from more insights on trait variability at the individual and species levels.Tadpole assemblages offer an excellent system to understand the relative influence of intraspecific and interspecific variability on community assembly, due to their high phenotypic plasticity, and the strong influence that environmental variables have on their spatial distribution and individual performance.Here, we quantified the intraspecific and interspecific components of tadpoles' trait variability in order to investigate their relative role in shaping tadpole communities.We selected eight functional traits related to microhabitat use, foraging strategies, and swimming ability. We measured these traits on 678 individuals from 22 species captured in 43 ponds in the Atlantic Forest. We used single- and multitrait analyses to decompose trait variability. To explore the action of external and internal filtering on community assembly, we used a variance decomposition approach that compares phenotypic variability at the individual, population, community and regional levels.On average, 33% of trait variability was due to within-species variation. This decomposition varied widely among traits. We found only a reduced effect of external filtering (low variation in the height of the ventral fin within ponds in comparison to the total variation), whereas the internal filtering was stronger than expected. Traits related to the use of different microhabitats through the water column were generally less variable than traits related to swimming ability to escape of predators, with tail traits being highly variable within species.Our study highlights the importance of incorporating both intraspecific and interspecific, trait differences and of focusing on a diversity of traits related to both stabilizing niche and fitness differences in order to better understand how trait variation relates to species coexistence.

3.
R Soc Open Sci ; 2(7): 150165, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26587274

RESUMO

One of the most important goals of biodiversity studies is to identify which characteristics of local habitats act as filters that determine the diversity of functional traits along environmental gradients. In this study, we investigated the relationship between the environmental variables of ponds and the functional trait diversity distribution of anuran tadpoles in an agricultural area in southeastern Brazil. Our results show that the functional trait diversity of frog tadpoles has a bell-curve-shaped relationship with the depths of ponds inserted in a pasture matrix. Because we are witnessing increasing human pressure on land use, simple acts (e.g. maintaining reproductive habitats with medium depth) can be the first steps towards preserving the diversity of Neotropical frog tadpole traits in agricultural landscapes.

4.
Mar Environ Res ; 91: 61-7, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23489839

RESUMO

One of the main pesticides used in the cultivation of sugarcane in São Paulo State, Brazil, is Regent(®)800WG, the main active compound of which is fipronil. Fipronil is a potent insecticide that eliminates pests, including insects resistant to pyrethroids, organophosphates (OP) and carbamates (CA). There is little known on the toxic effects of fipronil on non-target organisms, such as tadpoles of frogs. It is possible that this compound carries a high toxicity for these organisms, since the pesticide can be incorporated into aquatic environments during the rainy season, a time which coincides with the time of amphibian reproduction and the occurrence of tadpoles in the aquatic environment in this region. Thus, the pesticide could be contributing to the decline of amphibians in the northwest region of São Paulo state due to its wide use. This study aimed to test the influence of Regent(®)800WG on some biochemical systems of tadpoles (such as antioxidant defense systems) at different stages of development. The results of analysis from in vivo exposures demonstrated that only a few parameters in the groups exposed to fipronil responded to exposure to Regent(®)800WG, results which indicate that the pesticide instigates biochemical responses in tadpoles. Although catalase and glucose-6-phosphate dehydrogenase (G6PDH) were unchanged during the experiments, glutathione-S-transferase (GST) was inhibited in tadpoles, and the activity of glutathione reductase (GR) varied according to the exposure period and pesticide concentration. This data demonstrated the influence of the fipronil formulation on the metabolism of tadpoles, and showed that it can increase their susceptibility to environmental contaminants.


Assuntos
Biomarcadores/análise , Larva/efeitos dos fármacos , Praguicidas/toxicidade , Pirazóis/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Exposição Ambiental , Ativação Enzimática/efeitos dos fármacos , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...